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Flaws of using SGD and its variants

Require laborious parameters tuning such as learning rate, learning
rate decay and etc.

Keskar et al. (2017) [2] find the generalization gap between large and
small batch.

Figure: Sharpe local minimum
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Flaws of using SGD and its variants

Goyal et al. (2017) [3] use linear scaling rule for adjusting learning
rates and develop a new warmup scheme.

Figure: learning rate scaling and warm-up strategy
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Newton methods in convex optimization literature

Consider the optimization problem: minimize
θ

f (θ) : Rn → R with

∇2f ≥ 0

Newton method solve the following approximation problem to get a
direction d :

minimize
θ

1

2
dT∇2f (θ)d +∇f (θ)Td + f (θ) (1)

If ∇2f (θ) is positive semi-definite, then the optimal value is obtain on
d where:

∇2f (θ)d = −∇f (θ) (2)
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Strengths of using Newton methods

faster convergence when get close to the minimizer

Figure: Good local approximation

Figure: Compared to gradient descent
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Strengths of using Newton methods

Relieve the problem of ill-conditioning: if gradient changes fast, make
a short step; if gradient changes slow, make a long step.

Newton method does this by choosing d = −∇2f (θ)−1∇f (θ)

Figure: ill-conditioning of gradient descent [1]
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Issues of applying Newton methods to DNN

Hessian matrix: H = ∇2f (θ) is no longer positive semi-definite

Impossible to construct Hessian matrix explicitly, which will take up
to O(θ2) complexity.

Impractical to solve:

∇2f (θ)d = −∇f (θ) (3)

which requires O(θ3) steps.
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Strategies to mitigate the above issues

Martens (2011) [1] has tried the following strategies to mitigate them:

Approximate the Hessian with a positive semi-definite matrix:

Pre-softmax layer f (θ) : Rn → Rm, where θ is the network parameters
Loss function: L(f (θ), y) where L is a convex function and y is the
groundtruth labels
The Jacobian matrix of f with respect to θ is:

Jθ =


∂f1
∂θ1

∂f1
∂θ2

∂f1
∂θ3

. . . ∂f1
∂θn

∂f2
∂θ1

∂f2
∂θ2

∂f2
∂θ3

. . . ∂f2
∂θn

...
...

...
. . .

...
∂fm
∂θ1

∂fm
∂θ2

∂fm
∂θ3

. . . ∂fm
∂θn

 (4)

The pre-softmax function can be linearized as:

f̃ (θ) = f (θ0) + Jθ(θ − θ0) (5)
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Approximate Hessian with Gauss-Newton matrix

Loss function can be approximated as L(f̃ (θ), y), gradient w.r.t. θ
can be calculated as:

∇f̃ (θ) =
∂L

∂f

T

Jθ (6)

The second-order derivative of loss w.r.t. θ then becomes:

∇2f̃ (θ) = Jθ
TBJθ (7)

where B is the second-order derivative of loss w.r.t. f :

B =


∂2L
∂f1

2 . . . ∂2L
∂f1fn

...
. . .

...
∂2L
∂f1fn

. . . ∂2L
∂fnfn

 (8)

In this case, the ∇2f̃ (θ) is the Gauss-Newton matrix, and positive
semi-definite.
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Linear conjugate gradient method (part 1)

In stochastic cases, Gauss-Newton matrix is evaluated as:

G =
1

N

N∑
i=1

J
(i)
θ

T
B(i)J

(i)
θ (9)

The gradient is:

g =
1

N

N∑
i=1

∇f (θ) (10)

To solve Gd = −g , we can rely on linear conjugate gradient method
[4].
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Linear conjugate gradient method (part 2)

Minimizing the function f (x) = 1
2x

TAx − bT x equals solving Ax = b:

Figure: Linear conjugate gradient [6]
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A few more strategies

There are also a few strategies that are important but I didn’t mention:

Calculate Gauss-Newton matrix-vector product in deep learning
library, i.e. Tensorflow:

Gv = Jθ
TBJθv (11)

Use line search to adaptively choose a step size

Use full batch for gradient and function value evaluation

You may refer to [1] [5] for details.
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Experiments on 3-layer CNN

Results on 3-layer CNN with MSE loss function, trained and tested on
CIFAR10:

Figure: Training loss Figure: Testing accuracy
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Experiments on 3-layer CNN

C 10% sub-sampled Gv 5% sub-sampled Gv 1% sub-sampled Gv
0.01 l 78.09 78.33 75.62

0.1 l 74.96 75.33 73.45

1 l 73.03 73.35 72.82

Table: Test accuracy of 3-layer CNN (%)

Memory bsize 1024 bsize 512 bsize 258
10% sub-sampled Gv 3.1GB 1.8GB 1.1GB

5% sub-sampled Gv 3.1GB 1.8GB 1.1GB

1% sub-sampled Gv 3.1GB 1.8GB 1.1GB

SGD 3.1GB 1.8GB 1.1GB

Table: Memory consumption
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Experiments on 6-layer CNN

Results on 6-layer CNN with MSE loss function, trained and tested on
CIFAR10:

Figure: Training loss Figure: Testing accuracy
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Experiments on 6-layer CNN

C 10% sub-sampled Gv 5% sub-sampled Gv 1% sub-sampled Gv
0.01 l 80.61 81.41 75.50

0.1 l 74.06 73.55 75.90

1 l 71.03 70.83 76.29

Table: Test accuracy of 6-layer CNN (%)

Memory bsize 1024 bsize 512 bsize 258
10% sub-sampled Gv 7.2GB 3.8GB 2.1GB

5% sub-sampled Gv 7.2GB 3.8GB 2.1GB

1% sub-sampled Gv 7.2GB 3.8GB 2.1GB

SGD 7.2GB 3.8GB 2.1GB

Table: Memory consumption
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Robustness of Newton Method

Figure: Final accuracy versus training
time on 3-layer CNN

Figure: Final accuracy versus training
time on 6-layer CNN
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Future works

We already made our codes public:
https://github.com/cjlin1/simpleNN.

There are some future works:

Solve the quadratic function with standard SGD + momentum.
Adaptive batching strategies
Reduce the overhead of calculating Jacobian-vector product
Effective pre-conditioner
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