Second-order optimization methods for deep neural

network

Pengrui Quan

Department of Electrical and Computer Engineering
UCLA

December 2, 2019

1/20

IIiilIE!IIIiE!!lIII

© Motivations

© Newton methods

© Strengths of Newton methods

@ Work around with Newton methods to DNN
© Experiments

© Future works

2/20

Flaws of using SGD and its variants

@ Require laborious parameters tuning such as learning rate, learning
rate decay and etc.

o Keskar et al. (2017) [2] find the generalization gap between large and
small batch.

Training Function

! Testing Function

f(z)

Flat Minimum Sharp Minimum
Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss

function and the X-axis the variables (parameters)

Figure: Sharpe local minimum

3/20

Flaws of using SGD and its variants

o Goyal et al. (2017) [3] use linear scaling rule for adjusting learning
rates and develop a new warmup scheme.

%0 ———_ I e |

o E3 0 3 w o 2 w0) w o 2 w©))
opochs opachs apachs

Figure 3. Training error vs. minibatch size. Training error curves for the 256 minibatch baseline and larger minibatches using gradual

warmup and the linear scaling rule. Note how the training curves closely match the baselin i armup period) up through 8k

minibatches. Validation error (mean-std of 5 runs) is shown in the legend, along with minibatch size kn and reference learning rate 7.

Figure: learning rate scaling and warm-up strategy

4/20

Newton methods in convex optimization literature

o Consider the optimization problem: miniemize f(0) : R" — R with
V£ >0

@ Newton method solve the following approximation problem to get a
direction d-:

1
miniemizeEdTvzf(G)d +V£(0)"d+ f(0) (1)
o If V2£(0) is positive semi-definite, then the optimal value is obtain on

d where:

V2f(0)d = —Vf(0) (2)

5/20

Strengths of using Newton methods

o faster convergence when get close to the minimizer

=)

(@, (@)
(@ + A, £(@ + Azne)) f

Figure: Good local approximation

distance to optimum
distance to optimum

Slow final convergence Fast final convergence

Figure: Compared to gradient descent

6/20

Strengths of using Newton methods

@ Relieve the problem of ill-conditioning: if gradient changes fast, make
a short step; if gradient changes slow, make a long step.

o Newton method does this by choosing d = —V2£(0) 1V (6)

Figure 1. Optimization in a long narrow valley

Figure: ill-conditioning of gradient descent [1]

7/20

Issues of applying Newton methods to DNN

@ Hessian matrix: H = V2f(f) is no longer positive semi-definite
@ Impossible to construct Hessian matrix explicitly, which will take up
to O(6?) complexity.

@ Impractical to solve:
V2f(0)d = —V£(0) (3)

which requires O(#3) steps.

8/20

Strategies to mitigate the above issues

Martens (2011) [1] has tried the following strategies to mitigate them:

@ Approximate the Hessian with a positive semi-definite matrix:

o Pre-softmax layer () : R" — R™, where ¢ is the network parameters

o Loss function: L(f(#),y) where L is a convex function and y is the
groundtruth labels

e The Jacobian matrix of f with respect to 6 is:

ofi 0h O Oh
Jy= |7 o (4)
Ofy Ofy Ofn Of
86, 96, 903 " 90,
e The pre-softmax function can be linearized as:
F(6) = f(60) + Jo(6 — 6o) ()

9/20

Approximate Hessian with Gauss-Newton matrix

@ Loss function can be approximated as L(f(6), y), gradient w.r.t. ¢

can be calculated as:

Vi) = 2L 6)

@ The second-order derivative of loss w.r.t. § then becomes:

V2£(0) = Jp T BJy (7)

where B is the second-order derivative of loss w.r.t. f:

9L 92L
on2 - ORF
B=1|: C (8)
2L &L
Ofif, " Ofnfy

In this case, the VQF(G) is the Gauss-Newton matrix, and positive
semi-definite.

10/20

Linear conjugate gradient method (part 1)

@ In stochastic cases, Gauss-Newton matrix is evaluated as:

1 N T . (i
6=y > 4 8Oy (9)
i=1
The gradient is:

L
g= 1> VF() (10)

i=1

@ To solve Gd = —g, we can rely on linear conjugate gradient method

[4].

11/20

Linear conjugate gradient method (part 2)

Minimizing the function f(x) = %XTAX — b x equals solving Ax = b:

Algorithm 5.1 (CG-Preliminary Version).

Given xo;
Setryg < Axg — b, py < —ro, k < 0;
while r; # 0
T
o — — r; P, (5.14a)
Pr Apy
Xk+1 <= Xk + O Pis (5.14b)
kg1 < Axgpr — b; (5.14¢)
T
Tip1 APk
Brrt < —F—— (5.14d)
Pl AP
P41 < —Teg1 + B P (5.14e)
k<—k+1; (5.14f)
end (while)

Figure: Linear conjugate gradient [6]

12/20

A few more strategies

There are also a few strategies that are important but | didn't mention:

@ Calculate Gauss-Newton matrix-vector product in deep learning
library, i.e. Tensorflow:

Gv = Jp " BJpv (11)

@ Use line search to adaptively choose a step size
@ Use full batch for gradient and function value evaluation

You may refer to [1] [5] for details.

13/20

Experiments on 3-layer CNN

Results on 3-layer CNN with MSE loss function, trained and tested on
CIFAR10:

loss changes w.r.t time on 3 layers CNN (C=0.01, Ir=0.01) Test accuracy changes w.r.t time on 3 layers CNN (C=0.01, Ir=0.01)
7 —— Newton (52500) 809
—— Newton (S5000)
. —— SGD (BS256) 70
—— SGD (BS1024)
SGD (BS4096) 60
5
E 50
w4 =
g e
g 404
3 B
2 301 —— Newton (52500)
—— Newton (55000)
\ 20 —— 5GD (B5256)
1 —— SGD (B51024)
SGD (BS4096)
10 4
0 500 1000 1500 2000 o 500 1000 1500 2000
time/Sec. time/Sec.
Figure: Training loss Figure: Testing accuracy

14 /20

Experiments on 3-layer CNN

C 10% sub-sampled Gv | 5% sub-sampled Gv | 1% sub-sampled Gv
0.01/ 78.09 78.33 75.62
0.1/ 74.96 75.33 73.45
1/ 73.03 73.35 72.82
Table: Test accuracy of 3-layer CNN (%)
Memory bsize 1024 | bsize 512 | bsize 258
10% sub-sampled Gv 3.1GB 1.8GB 1.1GB
5% sub-sampled Gv 3.1GB 1.8GB 1.1GB
1% sub-sampled Gv 3.1GB 1.8GB 1.1GB
SGD 3.1GB 1.8GB 1.1GB

Table: Memory consumption

15/20

Experiments on 6-layer CNN

Results on 6-layer CNN with MSE loss function, trained and tested on
CIFAR10:

loss changes w.r.t time on 6 layers CNN (C=0.01, Ir=0.01) Test accuracy changes w.r.t time on 6 layers CNN (C=0.01, Ir=0.01)
4.0 —— Newton (52500) 80
—— Newton (S5000)
35 —— SGD (BS256) 1
—— SGD (BS1024)
30 SGD (BS4096) .
25 £ 50
8 o
8 e
=204 2 20
&
15 30
—— Newton (52500)
10 —— Newton (55000)
20
— 5GD (B5256)
—— SGD (BS1024)
05
104 SGD (BS4096)
o 1000 2000 3000 4000 5000 6000 7000 o 1000 2000 3000 4000 5000 6000 7000
time/Sec. time/Sec.
Figure: Training loss Figure: Testing accuracy

16 /20

Experiments on 6-layer CNN

C 10% sub-sampled Gv | 5% sub-sampled Gv | 1% sub-sampled Gv
0.01/ 80.61 81.41 75.50
0.1/ 74.06 73.55 75.90
1/ 71.03 70.83 76.29
Table: Test accuracy of 6-layer CNN (%)
Memory bsize 1024 | bsize 512 | bsize 258
10% sub-sampled Gv 7.2GB 3.8GB 2.1GB
5% sub-sampled Gv 7.2GB 3.8GB 2.1GB
1% sub-sampled Gv 7.2GB 3.8GB 2.1GB
SGD 7.2GB 3.8GB 2.1GB

Table: Memory consumption

17/20

Robustness of Newton Method

Test accuracy versus time on 3-layer CNN Test accuracy versus time on 6-layer CNN
80
» x x ° ° 80+ a e .
" A a I x
70 .
704 A
0 . @ Newton (52500, C0.01) ¢ @ Newton (52500, C0.01)
X Newton (52500, C0.1) 60 X Newton (52500, C0.1)
_ A Newton (52500, C1) _ A Newton (52500, C1)
& 50 ® Newton ($5000, C0.01) £ 504 ® Newton (55000, C0.01)
g X Newton (55000, C0.1) g X Newton (55000, C0.1)
R A Newton (55000, C1)] 04 A Newton (55000, C1)
b ® Newton (5500, C0.01) 8 ® Newton (S500, C0.01)
» % Newton (5500, €0.1) 2] % Newton (5500, C0.1)
A Newton (5500, C1) A Newton (5500, C1)
® SGD (C0.011r0.001) ® SGD (C0.01 Ir0.001)
20 X 5GD (€0.011r0.003) 204 % 5GD (C0.01 Ir0.003)
4 5GD (C0.011r0.01) A 5GD (C0.01 Ir0.01)
10 + 4 SGD (C0.011r0.03) 104 + 4 SGD (C0.01 Ir0.03)
500 750 1000 1250 1500 1750 2000 2250 1000 2000 3000 4000 5000 6000 7000
Sec secs

Figure: Final accuracy versus training Figure: Final accuracy versus training
time on 3-layer CNN time on 6-layer CNN

18/20

@ We already made our codes public:
https://github.com/cjlinl/simpleNN.
@ There are some future works:

Solve the quadratic function with standard SGD + momentum.
Adaptive batching strategies

Reduce the overhead of calculating Jacobian-vector product
Effective pre-conditioner

19/20

https://github.com/cjlin1/simpleNN

Reference

[1]
2]

[3]

[4]

Martens J. Deep learning via Hessian-free optimization[C]//ICML.
2010, 27: 735-742.

Keskar N S, Mudigere D, Nocedal J, et al. On large-batch training for
deep learning: Generalization gap and sharp minimal[J]. arXiv preprint
arXiv:1609.04836, 2016.

Goyal P, Dollar P, Girshick R, et al. Accurate, large minibatch sgd:
Training imagenet in 1 hour[J]. arXiv preprint arXiv:1706.02677, 2017.

Hestenes M R, Stiefel E. Methods of conjugate gradients for solving
linear systems[M]. Washington, DC: NBS, 1952.

[5] Wang C C, Tan K L, Lin C J. Newton Methods for Convolutional

[6]

Neural Networks[J]. arXiv preprint arXiv:1811.06100, 2018.

Nocedal J, Wright S. Numerical optimization[M]. Springer Science &
Business Media, 2006.

20/20

	Motivations
	Newton methods
	Strengths of Newton methods
	Work around with Newton methods to DNN
	Experiments
	Future works

