
Second-order method for Deep Neural Network
Optimization

ECE 236C Course Project Report

Pengrui Quan (805227042)
Department of Electrical and Computer Engineering

University of California, Los Angeles

June 11, 2019

1 Introduction
Deep Neural Network (DNN) has shown its prominent position in image classification [1], ob-
ject detection [3][4], speech recognition [2] and etc. Despite numerous existing optimization
methods, Stochastic Gradient Descent (SGD) and its variants are the most widely applied
algorithms in searching effective network parameters. However, SGD has several deficien-
cies: Firstly, gradient descent, compared to second-order method, has slower convergence
and zigzagging phenomenon in convex optimization as is shown in convergence analysis.
Secondly, SGD commonly comes with time-consuming hyper-parameters tuning, such as
choosing an appropriate step size. Furthermore, with quite a large batch size, SGD may
render a sharp local minimum and poor generalization of the model [5].

In this project, we are going to try different second-order optimization methods in DNN
in a stochastic manner, including Trust-region Method (TR) and (adaptive) Cubic Reg-
ularization (CR), and compared their convergence rate, generalization error and compu-
tation efficiency with SGD. Codes are made available at https://github.com/quanpr/
Second-order-method-for-Deep-Neural-Network.

2 Related work
In the context of neural network, directly constructing a Hessian matrix is impractical due to
the volume of network parameters. Therefore, there are basically two ways for compensation:
one is to use the celebrated Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with its
limited memory version (L-BFGS)[9]. Bollapragada (2018) applied an aggressive batching
strategy and stochastic line search to Quasi-Newton method in DNN [6].

1

https://github.com/quanpr/Second-order-method-for-Deep-Neural-Network
https://github.com/quanpr/Second-order-method-for-Deep-Neural-Network


Another, in a randomized approach, is to approximate the model locally with quadratic
equation using Hessian-vector product or Gauss-Newton Hessian Matrix-vector product with
a mini-batch of data:

H = 1
N

N∑
i=1
∇2L(θ;xi) (1)

g = 1
N

N∑
i=1
∇L(θ;xi) (2)

f(θ + d;x) ≈ 1
2d

THd+ gTd+ f(θ;x) (3)

Hd = −g (4)

and work out the minimization of the sub-problem (3) through solving a linear equation
(4) using Conjugate Gradient method (CG). Martens (2010) applied the Gauss-Newton
matrix G and a damping strategy [7] [8] for minimizing quadratic equation (3).

It is worth noticing that through CG method, we do not necessarily construct the full
Hessian matrix but making use of the Hessian-vector product or Gauss-Newton matrix-vector
product same as the ideas in [7] and [8], where Martens develop a “Hessian-free” approach and
apply it to training deep auto-encoders. Hessian-vector products can be computed efficiently
using a form of automatic differentiation supported by most popular deep learning library.

Alternatively, besides solving linear equation (4), we can also minimize the quadratic
approximation of the model (3) using gradient descent directly as is suggested in [10] (Nocedal
J, 2016) and [13] (Liu X, 2018). However, gradient descent empirically requires laborious
parameter tuning, i.e. step size, from problem to problem.

3 Trust-region Method (TR)
Typically, TR method is to obtain a descent direction by solving the following quadratic
problem (5) within a trust region, and iterate this process until a stopping criterion is met.

dt+1 = argmin
1
2d

THtd+ gT
t d, s.t.‖d‖ ≤ r (5)

3.1 Conjugate gradient for TR method
To apply the conjugate gradient for solving (5), we should take care of two requirements
different from standard CG method: the Hessian matrix of a DNN is indefinite in general,
and the optimal solution may violate the trust region boundary. To handle these conditions,
we will adopt the famous CG-Steihaug method, as is mentioned in [21] and [11] (Nocedal J,
2006). That is, if the current searching direction dj has a non-positive curvature with the
Hessian H, then we will return a vector along this searching direction satisfying the trust
region criterion. Or if the trust region bound is violated, then we will project the solution

2



onto the trust region boundary and terminate the CG iteration. We refer our reader to [11],
[14], [15] and [21] for detailed algorithms of CG-Steihaug method.

For efficiency consideration, instead of using the full gradient and stochastic Hessian in
each Newton update as is done in [7], [8] and [12], we use stochastic gradient and stochastic
Hessian to solve linear equation (4).

3.2 Gradient Descent for TR method
An alternative to Newton-CG is to solve the problem (3) using gradient descent. If we apply
the standard gradient method, we can obtain the following update:

dt+1 = dt − η(Hidt + gi) (6)
Therefore, we can have the following algorithm for solving problem (3):

Algorithm 1 Trust region method
1: Initial model parameters θ0
2: for i = 1 : N do
3: estimate stochastic gradient gi

4: Initial d1 with d1 ← α∇gi . s.t. dt satisfies trust region criterion
5: for t = 1 : Ni do
6: if ‖dt‖ ≤ r then
7: estimate Hessian-vector product Hidt

8: dt+1 = dt − η(Hidt + gi) . apply gradient descent step to the sub-problem
9: else

10: project dt+1 onto the unit ball r
11: break
12: update model parameters θi+1 ← θi + dt+1

13: return θN+1

4 Cubic Regularization Method (CR)
The idea of Cubic Regularization Method (CR) is to introduce a cubic penalty term:

d = argmin
1
2d

THtd+ gT
t d+ ρ

3‖d‖
3
2 (7)

The regularization coefficient ρ describes how trustworthy our second-order approximation
is over the parameter space.

4.1 Conjugate Gradient for CR Method
Besides the standard CG approach, we also make three modifications to adopt CG method.
Firstly, in each CG iteration, we utilize the stochastic Hessian and approximate full gradient
in computation. Since using the whole dataset demands too large GPU memory in practice,

3



we only adopt 10% of the dataset for full gradient estimation ∇L(θ;xi) and function value
evaluation L(θ;xi). The reason for using full gradient is that we are more likely to have
a descent direction, and gradient evaluation is cheaper than the one of Hessian. As is
mentioned, we compute stochastic Hessian with a mini-batch same as the procedures in TR
method.

Secondly, since Hessian matrix is indefinite in general, we also adopt an early stopping
strategy same as CG-Steihaug method [22]. The iteration is terminated whenever a negative
curvature occurs.

Furthermore, to make CR problem solvable by CG method, we use quadratic penalty
term instead of the cubic one, which can be further referred as damping[7], like with stan-
dard Newton approach. And we also use the famous Levenberg-Marquardt method (LM)
to adaptively choose the penalty parameter ρ. Theoretically speaking, since the optimal
solution to the quadratic regularized problem is:

d = −(H + ρI)−1g (8)

The parameter ρ is to describe how conservative a step we want to make: a large ρ will
render a gradient step and a small ρ will give a Newton step. The reduction ratio is a scalar
quantity which attempts to measure the accuracy of f(θ + d;x) and is given by:

α = L(θ + d;x)− L(θ;x)
f(θ + d;x)− f(θ;x) (9)

where L(θ;x) is the actual loss function and f(θ;x) is the quadratic approximation given
DNN parameters θ with x the input training data.

ρ =


ρ/2, α ≥ 0.8
ρ, otherwise

2ρ, 10−4 ≤ α ≤ 0.8

Therefore, the full CG algorithm can be summarized in Algorithm 2.
It is worth mentioning that only when the estimation of actual decrease is large enough

will LM method accepts the network parameter update.

4.2 Gradient descent for CR Method
The gradient descent method for CR problem is similar to the one in TR method, except
that gradient is changed to:

∇f(θ;x) = Hd+ g + ρ‖d‖2d (10)

and there is no trust region constraint in the descent direction.

4



Algorithm 2 CG method of adaptive quadratic regularization
1: Initial model parameters θ0, step size η
2: for i = 1 : N do
3: estimate full gradient gi

4: Initial d← −gi

5: estimate Hessian-vector product Hid
6: solve (Hi + ρI)d = −gi using CG method
7: set reduction ratio α = L(θ+d;x)−L(θ;x)

f(θ+d;x)−f(θ;x)
8: if α ≥ 0.8 then
9: θi+1 ← θi + ηd

10: ρ← ρ/2
11: else if α ≥ 10−4 then
12: θi+1 ← θi + ηd
13: else
14: θi+1 ← θi

15: ρ← 2ρ
16: return θN

5



5 Experiments
For comparison, we design a Convolutional Neural Network (CNN) with the following con-
figuration as is shown in Table 1.

Layer Kernel structure Feature map
Conv1 + SReLU + BatchNorm 32× 3× 3× 3 32× 32× 32
Conv2 + SReLU + BatchNorm 64× 32× 3× 3 64× 32× 32
Conv3 + SReLU + BatchNorm 64× 64× 3× 3 64× 32× 32

MaxPool 2× 2 64× 16× 16
Conv4 + SReLU + BatchNorm 64× 64× 3× 3 64× 16× 16

MaxPool 2× 2 64× 8× 8
FC layer + SReLU 4096× 1024 1024
FC layer + SReLU 1024× 256 256
FC layer + SReLU 256× 10 10

Table 1: CNN configuration

For terminology clarification, BatchNorm is the same as the normalization method in [18];
FC layer refers to the fully connected layer; SReLU is the continuous activation function with
ε = 0.1 approximating its counterpart ReLU [17].

ReLU(x) = max(x, 0) (11)

SReLU(x) = x+
√
x2 + ε

2 , ε > 0 (12)

The reasons for changing ReLU to SReLU is that we want to compare the effectiveness of
second-order method on ReLU activated CNN and SReLU activated CNN, where more non-
linearity is introduced to the network with derivative existing everywhere. We trained and
tested CNN on CIFAR-10, a tiny images classification dataset [16].

Experiments are conducted on 4 NVIDIA GeForce GTX 1080 Ti graph cards with
2.40GHz Intel(R) Xeon CPU. Neural network model are either CNN in Table 1 or ResNet-
18 [19], a widely used deep neural network structure in computer vision. For gradient
descent based TR method, size of trust region γ equals to 0.1, while penalty coefficients
ρ of CR method is set to 10. For all gradient descent experiments, batch size is fixed
to 128. We also disable momentum and regularization term, set step size to 0.1 and de-
crease it every 80 epochs (an epoch refers to iterate through the whole training dataset
for one time). For conjugate gradient based solver, step size and size of trust region
are set to 1 and 0.1 respectively, and penalty coefficients ρ of CR method is initialized
with 1. Since each iteration is quite expensive, we only run our algorithms for 80 epochs
with batch size 512. Codes are made public at github https://github.com/quanpr/
Second-order-method-for-Deep-Neural-Network.

6

https://github.com/quanpr/Second-order-method-for-Deep-Neural-Network
https://github.com/quanpr/Second-order-method-for-Deep-Neural-Network


5.1 Gradient Descent for TR and CR method
We show the convergence of training loss and test accuracy when the CNN is trained using
SGD directly, gradient descent based TR method and gradient descent based CR method.
For comparison, we conducted experiments on both SReLU activated CNN and ReLU ac-
tivated CNN, and their results are presented from Figure 1 to 4. For simplicity, we denote
GD as the gradient descent based inner solver and CG as the conjugate gradient based inner
solver in the following sections.

Figure 1: Training loss of SReLU-CNN

From Figure 1 and 2 we can observe that both TR-GD method and CR-GD method
are comparable to SGD. Even though they have slightly slower convergence rate, testing
accuracy is quite similar to SGD, and CR-GD method even outperforms SGD. From Figure
3 and 4, we can also notice that advantage of CR-GD method is less significant, and we
consider this might be due to the less non-linearity in ReLU activated network. Therefore,
we may test the performance of CR-GD method on those Recurrent Neural Network (RNN)
[20] with sigmoid or tanh activation function to verify this in future investigation.

We also conduct experiments on ResNet-18 [19], with results summarized in Figure 5
and 6. In the ResNet experiments, we keep hyper-parameter setting the same as previous
experiments.

However, differnt from the SReLU-CNN experiments, SGD has the best convergence and
Newton-CR-GD method is less prominent in generalization accuracy. Another observation
is that the loss of Newton-CR-GD further increase in later training process as is shown in
Figrue 5. We conjecture the reason for this unusual phenomenon is that the constant penalty
coefficient ρ makes the training unstable, and we think further improvement can be made to
adaptively select the coefficient same as the procedures in LM method.

You may refer to Table 2 to 4 for detailed numerical results.

7



Figure 2: Test accuracy of SReLU-CNN

Figure 3: Training loss of ReLU-CNN

8



Figure 4: Test accuracy of ReLU-CNN

Figure 5: Training loss of SReLU-ResNet

9



Figure 6: Test accuracy of SReLU-ResNet

10



5.2 Conjugate Gradient for TR and CR method
In this section, we present the performance of conjugate gradient based solver for TR and
CR method. Besides, we also compare the famous LBFGS algorithm with ours.

Figure 7: Training loss of SReLU-CNN-CG

From Figure 7, we may observe that all second-order methods conerveges much slower
than SGD. And CR method is much smoother than TR method and LBFGS in training
phase. We think that might be caused by using full gradient for training and it significantly
reduce noise when solving linear equation (4).

However, CR method is notably less stable than the others in terms of generalization in
Figure 8. We think this may be caused by LM method’s constantly rejecting some update
and render a much narrower local minimum. Therefore, despite the stable training loss,
generalization performance varies significantly when evaluate the model on test dataset. One
alternative is that we can try on Gauss-Newton method where the algorithm is guarantee to
have descent step without rejection.

We can also observe from Figure 7 that LBFGS algorithm increases abruptly in training
phase, and we think this might be caused by not enough batch size in estimating gradient
and the instability of LBFGS when approximating Hessian crudely.

11



Figure 8: Test accuracy of SReLU-CNN-CG

12



5.3 Generalization error and time comparison
In this section, we report performance of different methods from Table 2 to 5. We mainly
focus on their generalization errors and training efficiency. From Table 2 to 4, we know that
gradient based cubic regularization (CR-GD) can outperform the others in generalization
performance, and SGD converges to the smallest local minimum with decaying step size.
Furthermore, we can observe from Table 5 that second-order method will require about 5×
to 20× expensive in each step, depending on which inner solver we chose.

Method Final Loss Test accuracy (%)
SGD 0.0157 88.04

TR-GD 0.0381 88.13
CR-GD 0.0223 88.72
TR-CG 1.13 72.06
CR-CG 0.773 40.83
LBFGS 1.038 66.29

Table 2: Test accuracy of SReLU activated CNN (TR denotes Trust region; CR denotes
cubic regularization; GD denotes gradient descent; CG denotes conjugate gradient; LBFGS
denotes Limited-memory BFGS, or so-called Quasi-Newton method)

Method Final Loss Test accuracy (%)
SGD 0.0130 88.82

TR-GD 0.0573 88.73
CR-GD 0.0583 89.15

Table 3: Test accuracy of ReLU activated CNN (TR denotes Trust region; CR denotes cubic
regularization; GD denotes gradient descent)

Method Final Loss Test accuracy (%)
SGD 0.001 93.11

TR-GD 0.010 92.93
CR-GD 0.074 93.13

Table 4: Test accuracy of SReLU activated ResNet-18 (TR denotes Trust region; CR denotes
cubic regularization; GD denotes gradient descent)

6 Summary
In this project, we compare SGD with different second-order optimization method on CIFAR-
10 dataset. The gradient descent based Trust-Region (TR) and Cubic Regularization (CR)

13



Time per step (s) SGD TR-GD CR-GD CR-CG CR-CG LBFGS
SReLU-CNN 0.137 0.598 0.57 6.07 0.209 2.25
ReLU-CNN 0.120 0.604 0.568 - - -

SReLU-ResNet 0.123 2.38 1.52 - - -

Table 5: Time comparison of different solvers (GD denotes gradient descent is applied to sub-
problems; CG denotes conjugate gradient is used in solving linear equation approximately)

method can effectively converge to a local minimum that has comparable or even better
generalization performance as SGD, with approximately 5× to 20× expensive in each step.
On the other hand, both conjugate gradient based TR and conjugate gradient based CR
methods have much slower convergence and unstable test accuracy in test phase. Further
investigation will be made.

14



References
[1] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional

neural networks[C]//Advances in neural information processing systems. 2012: 1097-
1105.

[2] Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech
recognition[J]. IEEE Signal processing magazine, 2012, 29.

[3] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with
region proposal networks[C]//Advances in neural information processing systems. 2015:
91-99.

[4] Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc)
challenge[J]. International journal of computer vision, 2010, 88(2): 303-338.

[5] Keskar N S, Mudigere D, Nocedal J, et al. On large-batch training for deep learning:
Generalization gap and sharp minima[J]. arXiv preprint arXiv:1609.04836, 2016.

[6] Bollapragada R, Mudigere D, Nocedal J, et al. A progressive batching L-BFGS method
for machine learning[J]. arXiv preprint arXiv:1802.05374, 2018.

[7] Martens J. Deep learning via Hessian-free optimization[C]//ICML. 2010, 27: 735-742.

[8] Martens J, Sutskever I. Learning recurrent neural networks with hessian-free optimiza-
tion[C]//Proceedings of the 28th International Conference on Machine Learning (ICML-
11). 2011: 1033-1040.

[9] Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J].
Mathematical programming, 1989, 45(1-3): 503-528.

[10] Nocedal J. Sub-Sampled Newton Methods for Machine Learning. https:
//engineering.jhu.edu/ams/wp-content/uploads/sites/44/2014/08/
GOLDMAN-LECTURE-SLIDES.pdf

[11] Nocedal J, Wright S. Numerical optimization[M]. Springer Science & Business Media,
2006.

[12] Chen P H, Hsieh C. A comparison of second-order methods for deep convolutional neural
networks[J]. 2018.

[13] Liu X, Lee J D, Hsieh C J. Better Generalization by Efficient Trust Region Method[J].
2018.

[14] Lin C J, Weng R C, Keerthi S S. Trust region newton methods for large-scale logistic
regression[C]//Proceedings of the 24th international conference on Machine learning.
ACM, 2007: 561-568.

[15] Conn A R, Gould N I M, Toint P L. Trust region methods[M]. Siam, 2000.

15

https://engineering.jhu.edu/ams/wp-content/uploads/sites/44/2014/08/GOLDMAN-LECTURE-SLIDES.pdf
https://engineering.jhu.edu/ams/wp-content/uploads/sites/44/2014/08/GOLDMAN-LECTURE-SLIDES.pdf
https://engineering.jhu.edu/ams/wp-content/uploads/sites/44/2014/08/GOLDMAN-LECTURE-SLIDES.pdf


[16] Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images[R]. Tech-
nical report, University of Toronto, 2009.

[17] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann ma-
chines[C]//Proceedings of the 27th international conference on machine learning (ICML-
10). 2010: 807-814.

[18] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift[J]. arXiv preprint arXiv:1502.03167, 2015.

[19] He K, Zhang X, Ren S, et al. Deep residual learning for image recogni-
tion[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.
2016: 770-778.

[20] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997,
9(8): 1735-1780.

[21] Steihaug T. The conjugate gradient method and trust regions in large scale optimiza-
tion[J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 626-637.

[22] Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters[J].
Journal of the society for Industrial and Applied Mathematics, 1963, 11(2): 431-441.

16


	Introduction
	Related work
	Trust-region Method (TR)
	Conjugate gradient for TR method
	Gradient Descent for TR method

	Cubic Regularization Method (CR)
	 Conjugate Gradient for CR Method
	Gradient descent for CR Method

	Experiments
	Gradient Descent for TR and CR method
	Conjugate Gradient for TR and CR method
	Generalization error and time comparison

	Summary

