
Calculating Gauss-Newton Matrix-Vector Product by
Vector-Jacobian Products

Pengrui Quan
UCLA

November 5, 2019

1 Introduction
In a Newton method for training deep neural networks, at each conjugate gradient step a
Gauss-Newton matrix-vector product is conducted. Here we discuss our implementation by
using two vector-Jacobian products, a type of operations that are commonly available in
packages like Tensorflow. Our derivation follows from the description at https://j-towns.
github.io/2017/06/12/A-new-trick.html [2], though we follow the notation in Wang et
al [3].

2 Deriving right multiplication of a Jacobian matrix
The key procedure of calculatingGv is to derive the right multiplication of Jacobian matrices.
In most deep learning libraries, the product of left multiplication of a Jacobian matrix,
denoted as vTJθ, is well established, i.e. Tensorflow, PyTorch. We can make use of techniques
explained below to develop the right multiplication of the Jacobian matrix Jθv.

First we denote f(θ) : Rn → Rm with parameters θ ∈ Rn. Let v ∈ Rn be the right
multiplication vector and u ∈ Rm be a dummy variable.

The Jacobian matrix of f with respect to θ is:

Jθ =


∂f1
∂θ1

∂f1
∂θ2

∂f1
∂θ3

. . . ∂f1
∂θn

∂f2
∂θ1

∂f2
∂θ2

∂f2
∂θ3

. . . ∂f2
∂θn...

∂fm

∂θ1

∂fm

∂θ2

∂fm

∂θ3
. . . ∂fm

∂θn

 (1)

The left multiplication of the Jacobian matrix can be calculated by back propagation,
which is common in reverse mode automatic differentiation packages [1, p. 12]:

uT
∂f

∂θT
= uTJθ (2)

1

https://j-towns.github.io/2017/06/12/A-new-trick.html
https://j-towns.github.io/2017/06/12/A-new-trick.html

To use (2) for calculating Jθv, we define g(u) = uTJθ. Since uTJθ is a vector in Rn, the
mapping of v can be defined as a function g(u) = uTJθ, where g(u) : Rm → Rn. Hence, we
can take derivative of g(u) with respect to u, while providing the left multiplying vector v:

vT
∂g

∂u
= vT

∂(uTJθ)
∂u

(3)

= vTJθ
T (4)

= (Jθv)T (5)

In practical implementation, u can be any dummy vector such as the vector of all ones.

3 Deriving Gauss-Newton matrix vector product Gv
According to notations in [3], the loss function is defined as ξ(zL+1(θ)), where zL+1 is the
pre-softmax layer, and G equals:

G = JTBJ (6)
We first take derivative of loss ξ with respect zL+1 to obtain ∂ξ

∂zL+1 .
Then we calculate the right multiplication of the Jacobian matrix of vector ∂ξ

∂zL+1 by v
using the technique from section 1, where f(θ) is substituted with ∂ξ

∂zL+1 :

∂(ξ/∂zL+1)
∂θT

v = ∂2ξ

∂(zL+1)T∂zL+1 ·
∂zL+1

∂θT
v (7)

= BJv (8)

Finally we calculate Gv by the left multiplication of a Jacobian matrix, where we treat
BJv as the left multiplying vector u and f(θ) as zL+1 in equation (2):

(BJv)T ∂z
L+1

∂θ
= (BJv)TJ (9)

= vTJTBJ (10)
= (Gv)T (11)

References
[1] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jef-

frey Mark Siskind. Automatic differentiation in machine learning: a survey. Journal
of Machine Learning Research, 18(153):1–43, 2018.

[2] Jamie Townsend. A new trick for calculating Jacobian vector products, 2017.

[3] Chien-Chih Wang, Kent Loong Tan, and Chih-Jen Lin. Newton methods for convolu-
tional neural networks. ACM Transactions on Intelligent Systems and Technology, 2019.
To appear.

2

	Introduction
	Deriving right multiplication of a Jacobian matrix
	Deriving Gauss-Newton matrix vector product Gbold0mu mumu vvAGB18avvvv

